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HIGH-DIMENSIONAL ACTIVE LEARNING (AL)
Goal: Get same error as passive learning with less labeled data.
I high dimensions i.e. nlabeled � d� nunlabeled

I common strategy: uncertainty sampling for AL (U-AL)
I U-AL outperforms PL for low-dimensional and noiseless data

Does uncertainty-based active learning outperform
passive learning for high-dimensional data?

LOGISTIC REGRESSION EXPERIMENTS

0 10 20 30 40

0.3

0.4

0.5

0 500 1000

0.3

0.4

0.5

uniform uncertainty oracle unc.

Query budget Query budget

Te
st

 e
rr

or

santander [d=201] guillermo [d=4296]

0 10 20 30 40

0

0.2

0.4

0.6

0 500 1000

0

0.2

0.4

0.6

0.8

1

Query budget Query budget

P(
Er

r[
PL

] 
<

 E
rr

[A
L]

)

santander [d=201] guillermo [d=4296]

Extensive experiments on 15 datasets:
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I PL outperforms U-AL for many query budgets with nlabeled < d.
I The (rare) gains are lower than the losses incurred by U-AL.

THEORETICAL RESULT

Noiseless data: Truncated Gaussian mixture; d� nlabeled > nseed

Classifier: Logistic regression; uncertainty given by |θ̂>x|/‖θ̂‖2

Theorem (informal): Under mild conditions on nunlabeled, µ and σ
passive learning leads to lower prediction error than
uncertainty sampling, w.h.p. over the draws of data.
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I Similar result for oracle uncertainty sampling (i.e. using θ?)!

PROOF INTUITION AND INSIGHTS

1. Sampling points close to ground truth (GT)⇒ poor test error

Left: Querying ambiguous points leads to poor θ̂ for nlabeled � d.

2. U-AL queries points closer to the GT than PL

Right: Distance between GT and the points in the labeled set D`

I D` is collected with oracle U-AL (Mor) or passive learning (MPL)
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Takeaways: U-AL consistently outperforms PL if

1. data is well separated by large margin

2. the initial seed set is large

EXPERIMENTAL VALIDATION OF INSIGHTS

1. Remove the samples closest to the true decision boundary.
I Compute oracle by training on the whole dataset.
I The same curated unlabeled set is used for both PL and U-AL.
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Conclusion: Large class separation⇒ U-AL outperforms PL

2. Increase the size of the initial seed set.
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Conclusion: Large initial seed set⇒ U-AL outperforms PL

EXTENSION TO NON-LINEAR MODELS

Same phenomenon for ResNet18 models on image data.
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