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NOVEL CLASSES AS OOD DATA OUR APPROACH KEY 1: ROLE OF REGULARIZATION

Problem: Classifier predictions are incorrect on novel classes. | | At training time: Goal: Prevent complex models from interpolating on SU(U, ¢).
> Flag data from unseen classes as out-of-distribution (OOD). | | > Obtain an Ensemble w/ Regularized Disagreement.
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> Novel classes are often similar to in-distribution (ID) classes (Ue) = 1(z,0) iz e U} Large func. complexity ~ Good func. complexity
= difficult to distinguish ID and OOD data. ket EﬂzySIGppedFmeTumng (RS UL ey ) Advantages of early stopping:
return { f,. };=; . : : :
Current SOTA (unsupervised) novelty detection approaches e e PP g We. prove that there eX}StS an optimal stopping time at
perform poorly on novel-class detection. At test time: which every model predicts: (1) the correct label on ID data;

and (2) the arbitrary label on the OOD unlabeled data.
» For a test sample x, use outputs fi(x),..., fr(x) to compute

SEMI-SUPERVISED NOVELTY DETECTION the average pairwise disagreement score (details later). » Efficient model selection (requires only one training run).

Available data: » Flag as OOD samples with score larger than threshold 7.

1. Labeled set with ID samples. KEY 2: ENSEMBLE DISAGREEMENT SCORE

e.g. the training set for the prediction task. EXPERIMENTS Prior work: Entropy of average predictor (H o Avg).
2. Unlabeled set with unknown mixture of ID and OOD data. Easy ?(I)D: %V(I)_II;\I ZiF(iIE?OROlgl AEIFARClIOFXSRSl\(Q)_ISB(I) egtg Qur average pairwise d1sagreement25c0re:

e.g. hospital collects all X-rays performed during the day. ovel class ' [0-49] vs [50-99] etc (Avg o p)(fi(x),.... [k (x)) := K(K - 1) > p(filx), fi(x))
Prior SSND methods fail to use unlabeled data effectively. Evaluation metric: Area under ROC curve (AUROC) — e.g. p = total variation distance 7

e.g.- nnPU, MCD o R Unlike (H o Avg), our score exploits ensemble diversity.
Intuition for new method: Train ensemble on 5'U (U, ¢). e © AE Recondt MEE » (H o Avg) obtains lower FPR at the same TPR.
» Each model sees set U labeled with different ¢ € ). 08 . ERD (O e

» TP = correctly flagged OOD point; FP = ID flagged as OOD.
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’ Remark: Our approach makes use of two key ingredients: ] False negatives
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