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Abstract. Automated medical diagnosis systems need to be able to rec-
ognize when new diseases emerge, that are not represented in the training
data (ID). Even though current out-of-distribution (OOD) detection al-
gorithms can successfully distinguish completely different data sets, they
fail to reliably identify samples from novel classes that are similar to the
training data. We develop a new ensemble-based procedure that pro-
motes model diversity and exploits regularization to limit disagreement
to only OOD samples, using a batch containing an unknown mixture of
ID and OOD data. We show that our procedure significantly outperforms
state-of-the-art methods, including those that have access, during train-
ing, to known OOD data. We run extensive comparisons of our approach
on a variety of novel-class detection scenarios, on standard image data
sets as well as on new disease detection on medical image data sets. 1

Keywords: Novelty detection · Novel disease detection · Ensemble di-
versity · Regularization

1 Introduction

Modern machine learning (ML) systems are gaining popularity in many real-
world applications, such as aiding medical diagnosis [2]. Despite achieving great
test performance, many approaches have trouble dealing with out-of-distribution
(OOD) data, i.e. test inputs that are unlike the data seen during training. For
example, ML models often make incorrect predictions with high confidence when
new unseen classes emerge over time (e.g. undiscovered bacteria [38], new dis-
eases [18]), or when data suffers from distribution shift (e.g. corruptions [29],
environmental changes [22]). If the OOD data consists of novel classes, then we
must identify the OOD samples and bring them to the attention of human ex-
perts. This scenario is the focus of this paper and we use the terms OOD and
novelty detection interchangeably.

Novelty detection aims to identify test samples that have a low probabil-
ity under the marginal ID distribution PX , i.e. x should be flagged as OOD if
PX(x) ≤ α for some small constant α. If we could learn a model that estimates
precisely the level sets of PX , we would have perfect OOD detection. Unfortu-
nately, when the input space is high-dimensional (e.g high resolution medical

1 Our code is publicly available at https://github.com/ericpts/reto

https://github.com/ericpts/reto
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Fig. 1: Comparison of OOD detection methods ordered by the amount of infor-
mation about the OOD distribution that they require. Left: On the easy settings
usually reported in the literature, many methods achieve near-perfect detection.
Right: On novel-class settings where ID and OOD data are difficult to distin-
guish, the baselines reach a much lower TNR@95 compared to our method.

images) and we only have access to limited data, this problem is intractable. In
reality, however, we only need to detect outliers that actually appear in a test
set, which makes the problem more amenable to statistical methods.

Apart from a labeled ID training set, state-of-the-art (SOTA) OOD detection
methods often use some OOD data for training or calibration. We separate
existing approaches into four different levels of access to OOD data: 1) no OOD
data [23,39]; 2) an unlabeled set with an unknown mixture of ID and OOD
data where OOD samples are not marked (Unknown OOD) [40,35,28,47]; 3)
known OOD data, but from a different distribution than the test OOD (Different
OOD) [17,30]; or 4) known OOD data from the same distribution as test OOD
(Oracle OOD) [25,27].

Notably, prior work on OOD detection reports remarkably good detection
performance: when 95% of the true OOD samples are correctly identified (i.e.
the true positive rate is 95%), the ratio of ID samples correctly identified as
ID (i.e. the true negative rate) is often larger than 80% (this metric is known
as the TNR@95). However, these numbers are largely obtained when the in-
distribution (ID) and the OOD data sets are vastly different (e.g. SVHN vs
CIFAR10), while in real-world applications it is unlikely that the novel data
is so easy to distinguish from ID samples (e.g. chest X-rays of a new disease
may look quite similar to another pathology). When evaluating state-of-the-art
(SOTA) methods on novel-class settings on standard image data sets (e.g. SVHN,
CIFAR10), the TNR@95 for the best baseline drops below 40% (see Figure 1
Right).

In this work, we adopt the Unknown OOD setting and introduce a principled
method to obtain diverse ensembles by leveraging the unlabeled set and using
early stopping regularization. We call our method Ensembles with Regular-
ized Disagreement (ERD) and motivate it using a theoretical result on the
dynamics of gradient descent training under label noise. Our method improves
the state-of-the-art for novel-class detection, surpassing even approaches that
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assume oracle knowledge of OOD samples, as illustrated in Figure 1. Moreover,
we show that our algorithm consistently outperforms all baselines on a recently
proposed medical image OOD detection benchmark.

2 Problem setting

In this section we motivate the Unknown OOD setting that we adopt for our
method and stress its practical relevance.

Problem statement. We consider a labeled data set S = {(xi, yi)}ni=1 ∼ P ,
where xi ∈ X are the covariates and yi ∈ Y are discrete labels. We assume that
the labels are obtained as a deterministic function of the covariates, which we
denote y∗ : X → Y. In this paper we focus on detecting samples from novel
classes, unseen at training time. We define XID := {x : PX(x) > α} as ID points
and XOOD = {x : PX(x) ≤ α} as the set of OOD points, where PX is the
marginal ID distribution.

The Unknown OOD settings has been proposed in prior work on OOD de-
tection [40,28,47] and assumes that, apart from the ID training data with class
labels, we also have access to a batch of unlabeled data U drawn from the same
distribution Ptest as the test data. This distribution consists of a mixture of ID
and OOD data, with OOD proportion π ∈ [0, 1], that is Ptest[x ∈ XOOD] = π.
The goal is to use the set U to learn to distinguish between ID and OOD data
drawn from Ptest, without explicit knowledge of π nor which samples in U are
OOD.

The Unknown OOD setting is relevant for many practical applications that
would benefit from more effective novel-class detection. Consider, for instance,
a medical center that uses an automated system for real-time diagnosis. In ad-
dition, the hospital may wish to run a novelty detection algorithm offline every
week to check for possible new pathologies. A procedure based on the unknown
OOD setting can use all the X-rays from the week as an unlabeled set U . If U
contains X-rays exhibiting a new disease, the algorithm can be used to flag such
novel classes both in the already collected unlabeled set and for future patients
suffering from the same new disease. Furthermore, the flagged samples can be
examined and labeled by experts.

3 Proposed method

In this section we introduce our proposed algorithm, ERD, and provide a princi-
pled justification for the key ingredients that lead to the improved performance
of our method.

3.1 The complete ERD procedure

Recall that we have access to both a labeled training set S and an unlabeled set
U that contains both ID and unknown OOD samples. Moreover, we initialize
the models of the ensemble using weights pretrained on S.

In Algorithm 1 we show how to obtain an ERD ensemble. We begin by
assigning an arbitrary label c ∈ Y, to all the unlabeled samples in U , resulting
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Algorithm 1 Fine-tuning the ERD ensem-
ble
Input: Train set S, Validation set V , Unla-
beled set U , Weights W pretrained on S, En-
semble size K
Output: ERD ensemble {fyi}Ki=1

Sample K different labels {y1, ..., yK} from Y
for all c ∈ {y1, ..., yK} do
fc ← Initialize(W )
(U, c)← {(x, c) : x ∈ U}
fc ← EarlyStoppedFinetuning (fc, S ∪ (U, c);V )

end for
return {fyi}Ki=1

Algorithm 2 OOD detection with
ERD
Input: Ensemble {fyi}Ki=1, Test set T ,
Threshold t0, Disagreement metric ρ
Output: O, i.e. the OOD data in T
O ← ∅
for all x ∈ U do
if (Avg ◦ ρ)(fy1 , ..., fyK )(x) > t0
then
O ← O ∪ {x}

end if
end for
return O

in the c-labeled set (U, c) := {(x, c) : x ∈ U}. We then fine-tune a classifier fc on
the union S ∪ (U, c) of the correctly-labeled training set S and the unlabeled set
(U, c). We perform early stopping by picking a model at an intermediate epoch,
before the accuracy on a holdout ID validation set V starts to decrease. We
repeat this procedure to create an ensemble of several classifiers fc, for different
choices of c ∈ Y. Finally, during test time in Algorithm 2, we use this ensemble
to flag as OOD all the points for which an aggregate disagreement measure
surpasses a threshold value t0, as we elaborate later in this section.

3.2 Role of regularization

Recall that, in our approach, each member of the ensemble tries to fit a different
label c to the entire unlabeled set U in addition to the correct labels of the ID
training set S. We train the models to fit S ∪ (U, c), where we use the notation
(U, c) = (UID, c)∪(UOOD, c) = {(x, c) : x ∈ UID}∪{(x, c) : x ∈ UOOD}. Moreover,
we can partition the set (UID, c) into the subset of samples whose ground truth
label differs from c and are thus incorrectly labeled with c, and the subset whose
correct label is indeed c:

(U¬cID , c) := {(x, c) : x ∈ UID with y∗(x) 6= c}
(U cID, c) := {(x, c) : x ∈ UID with y∗(x) = c}

We now explain why and how we can regularize the model complexity such
that the classifier fits S and all of (U, c), except for (U¬cID , c). The key intuition
why regularization helps is that it is more difficult to fit the labels c on (U¬cID , c)
than on (UOOD, c), since (U¬cID , c) lies closer in covariate space to points in the
correctly labeled training set S. Hence, we can exactly fit (UOOD, c) but not the
entire (UID, c) if we adequately limit the function complexity (e.g. by choosing
a small model class, or through regularization), as illustrated in Figure 2 Left.
Moreover, since regularized predictors are smooth, it follows that the model
generalizes well on ID data and also predicts the label c on holdout OOD samples
similar to the ones in the UOOD. On the other hand, if the models are too
complex (e.g. deep neural networks [49]), then they can even fit the wrong labels
on (UID, c) (see Figure 2 Right), causing the models in the ensemble to disagree
on the entire unlabeled set U .
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Fig. 2: Restricting model complexity is necessary to prevent from flagging the whole
U as OOD. Left: Linear classifiers disagree on points in UOOD, but agree to predict
the correct label on samples from UID. Right: The models are too complex so they fit
the arbitrary label on the entire U .

We use early stopping regularization, motivated by recent empirical and theo-
retical works that have found that early stopped neural networks are less vulner-
able to label noise in the training data [46,26]. In Proposition 1 from Appendix
B we argue that there exists an optimal stopping time for gradient descent
at which all points in (U, c) are fit, except for the wrongly labeled samples in
(UID, c). To find the best stopping time in practice, we use a validation set of
labeled ID points to select an intermediate checkpoint before convergence. As
a model starts to fit (U¬cID , c), i.e. the wrongly labeled ID samples in UID, it
also predicts the label c on some validation ID points, leading to a decrease in
validation accuracy, as shown in Figure 3.

Fig. 3: Accuracy measured while fine-tuning a model pretrained on S (epoch 0 indicates
values obtained with the initial weights). The samples in (UOOD, c) are fit first, while
the model reaches high accuracy on (UID, c) much later. We fine-tune for at least one
epoch and then early stop when the validation accuracy starts decreasing after 7 epochs
(vertical line). The model is trained on SVHN[0:4] as ID and SVHN[5:9] as OOD.

3.3 Ensemble disagreement score

We now motivate a novel ensemble aggregation technique tailored to exploit
ensemble diversity that we use to detect OOD samples with ERD. Note that we
can cast the OOD detection problem as a hypothesis test with null hypothesis
H0 : x ∈ XID. Our procedure tests the null hypothesis by using an ensemble-
based score: The null hypothesis is rejected and we report x as OOD (positive)
if the score is larger than a threshold t0 (see Algorithm 2).

Previous works [23,34] first average the softmax predictions of the models

in the ensemble f̄(x) := 1
K

∑K
i=1 fi(x) ∈ [0, 1]|Y| and then use the entropy of

f̄(x) as a metric, i.e. (H ◦ Avg)(f1(x), ..., fK(x)) := −
∑|Y|
i=1(f̄(x))i log(f̄(x))i
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Fig. 4: Cartoon illustration showing a diverse ensemble of linear binary classifiers (solid
purple). We compare OOD detection performance for two aggregation scores: (H◦Avg)
(Left) and (Avg ◦ ρ) with ρ(f1(x), f2(x)) = 1sgn(f1(x)) 6=sgn(f2(x)) (Right). The two
metrics achieve similar TPRs, but (H ◦ Avg) leads to more false positives than our
score, (Avg ◦ ρ), since the former can only flag as OOD a band around the averaged
model (solid black) and hence cannot take advantage of the ensemble’s diversity.

where (f̄(x))i denotes the ith element of f̄(x). We argue that averaging model
outputs first, discards information about the diversity of the ensemble. Instead,
we propose the average pairwise disagreement between the outputs of K models
in an ensemble:

(Avg ◦ ρ)({fi(x)}Ki=1) :=
2

K(K − 1)

∑
i 6=j

ρ (fi(x), fj(x)) ,

where ρ is a measure of disagreement between the softmax outputs of two pre-
dictors, for example the total variation distance ρTV(fi(x), fj(x)) = 1

2‖fi(x) −
fj(x)‖1 used in our experiments.

In the sketch in Figure 4 we show that the score we propose, (Avg ◦ ρ),
achieves a higher TNR compared to (H◦Avg), for a fixed TPR – a common way
of evaluating statistical tests. Notice that the detection region for (H ◦ Avg) is
always limited to a band around the average model. In order for the (H◦Avg) to
have large TPR, this band needs to be wide, leading to many false positives. This
example demonstrates how averaging softmax outputs relinquishes the benefits
of a diverse ensemble that our disagreement score can exploit. In Appendix C
we provide quantitative experimental evidence that reveals that, indeed, our
disagreement score is crucial for good OOD detection performance with diverse
ensembles, such as the one obtained with Algorithm 1.

4 Experimental results

4.1 Standard image data sets

ID vs OOD settings. We report results on two broad types of OOD detection
scenarios: (1) Easy OOD data: ID and OOD samples come from strikingly differ-
ent data sets (e.g. CIFAR10 vs SVHN). These are the settings usually considered
in the literature and on which most baselines perform well; and (2) Hard OOD
data: The OOD data consists of “novel” classes that resemble the ID samples:
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Table 1: AUROC and TNR@95 for different OOD detection scenarios (the numbers in
squared brackets indicate the ID or OOD classes). We highlight the best ERD variant
and the best baseline among prior work. The asterisk marks methods proposed in this
paper. nnPU (†) assumes oracle knowledge of the OOD ratio in the unlabeled set.

Other settings Unknown OOD

ID data OOD data
Vanilla
Ensembles

Gram DPN OE Mahal. nnPU† MCD
Bin.
Classif. *

ERD *

AUROC ↑/TNR@95 ↑

SVHN CIFAR10 0.97/0.88 0.97/0.86 1.00/1.00 1.00/1.00 0.99/0.98 1.00/1.00 0.97/0.85 1.00/1.00 1.00/0.99
CIFAR10 SVHN 0.92/0.78 1.00/0.98 0.95/0.85 0.97/0.89 0.99/0.96 1.00/1.00 1.00/0.98 1.00/1.00 1.00/1.00
CIFAR100 SVHN 0.84/0.48 0.99/0.97 0.77/0.44 0.82/0.50 0.98/0.90 1.00/1.00 0.97/0.73 1.00/1.00 1.00/1.00

FMNIST
[0,2,3,7,8]

FMNIST
[1,4,5,6,9]

0.64/0.07 –/– 0.77/0.15 0.66/0.12 0.77/0.20 0.95/0.71 0.78/0.30 0.95/0.66 0.94/0.67

SVHN
[0:4]

SVHN
[5:9]

0.92/0.69 0.81/0.31 0.87/0.19 0.85/0.52 0.92/0.71 0.96/0.73 0.91/0.51 0.81/0.40 0.95/0.74

CIFAR10
[0:4]

CIFAR10
[5:9]

0.80/0.39 0.67/0.15 0.82/0.32 0.82/0.41 0.79/0.27 0.61/0.11 0.69/0.25 0.85/0.43 0.93/0.70

CIFAR100
[0:49]

CIFAR100
[50:99]

0.78/0.35 0.71/0.16 0.70/0.26 0.74/0.31 0.72/0.20 0.53/0.06 0.70/0.26 0.66/0.13 0.82/0.44

Average 0.84/0.52 0.86/0.57 0.84/0.46 0.84/0.54 0.88/0.60 0.86/0.66 0.86/0.55 0.89/0.66 0.95/0.79

e.g. the first 5 classes of CIFAR10 are ID, the last 5 classes are OOD. The sim-
ilarities between the ID and the OOD classes make these settings significantly
more challenging (see Appendix E for more details).

Baselines. We compare ERD against previous methods that are applicable to
the unknown OOD setting and also include well-known baselines that require
different kinds of access to OOD data for training, as indicated in Table 4. In
addition, we propose a novel simple approach that uses an unlabeled set: an
early stopped binary classifier (Bin. Classif.) trained to distinguish between S
and U . We include a detailed description of all the baselines together with precise
hyperparameter choices in Appendix D.

Our method – ERD. For our method we train ensembles of 5 MLP models for
FashionMNIST and ResNet20 [14] models for the other settings. The networks
are initialized with weights pretrained on the ID training set. For each model
in the ensemble we perform post-hoc early stopping: we train for 10 epochs
and select the iteration with the lowest validation loss. In the appendix we also
present results for a variant of ERD trained from random initializations.

Evaluation metrics. We use two standard metrics common in the OOD de-
tection literature: the area under the ROC curve (AUROC; larger values are
better) and the TNR at a TPR of 95% (TNR@95; larger values are better).

Summary of results. Table 1 summarizes the main empirical results. On the
easy scenarios (top part of the table) most methods achieve near-perfect OOD
detection with AUROC close to 1. However, on the novelty detection scenarios
(bottom part), ERD has a clear edge over the other approaches and improves
the average TNR@95 by 20% relative to the best baseline. Furthermore, on the
novel-class setting on CIFAR10, the TPR@95 gains of our method compared
to the best prior work go as high as 70%. A similar trend can be observed for
AUROC as well. The substantial gap between ERD and other approaches, both
in average AUROC and average TNR@95, indicates that our method lends itself
well to practical situations when accurate OOD detection is critical.
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Table 2: AUROC for some representative baselines from [5] on a medical OOD detec-
tion benchmark. We highlight the best ERD variant and the best baseline among
prior work. See Appendix G for details about the baselines and the data sets.

Data set Use case Mahal. kNN-8 VAE-BCE AE-MSE ERD ERD++

PADChest 1, 2 (easy OOD) 0.94 0.97 0.95 0.99 1.00 1.00
NIHCC 1, 2 (easy OOD) 0.98 0.99 0.99 0.98 0.97 0.99
DRD 1, 2 (easy OOD) 0.82 0.96 0.97 0.99 0.98 1.00

PADChest 3 (hard OOD) 0.53 0.46 0.52 0.55 0.77 0.72
NIHCC 3 (hard OOD) 0.52 0.52 0.50 0.52 0.46 0.50
DRD 3 (hard OOD) 0.70 0.60 0.67 0.64 0.91 1.00

Average AUROC 0.80 0.82 0.83 0.85 0.89 0.91

4.2 Medical image OOD detection benchmark

Data sets and baselines. We use the benchmark proposed in [5] which com-
prises different kinds of medical image data from both healthy and unhealthy
patients. For our comparison, we consider three modalities for the ID data: lat-
eral (PADChest) and frontal (NIHCC) chest X-rays and retinal images (DRD).
The authors annotate the training data with binary labels indicating whether
the patient is healthy or unhealthy, thus discarding information about the con-
dition. For each ID data set, the benchmark examines three categories of OOD
detection problems:

– Use case 1: The OOD data set contains images from a completely different
domain (e.g. X-rays as ID, and samples from CIFAR10 as OOD).

– Use case 2: The OOD data contains images captured incorrectly, e.g. lateral
chest X-rays as ID and frontal X-rays as OOD.

– Use case 3: The OOD data set contains images that come from novel diseases,
not present in the training set.

While the first two categories of outliers can be detected accurately by most
methods, the third scenario turns out to be more challenging, due to how similar
the ID and OOD samples are. We use the baselines considered in [5] and compare
them to the performance of both ERD and ERD++. The latter is a variant of
our method fine-tuned for more epochs and initialized from weights pretrained
on ImageNet (see Appendix D for more details). Since the training labels are
binary (healthy/unhealthy), we train ensembles of two models and note that the
performance of our method could be improved if one provides finer-grained an-
notations (e.g. by assigning different labels to the various diseases in the training
set, instead of collecting them all in the “unhealthy” class).

Summary of results. Our method improves the average AUROC from 0.85
to 0.91, compared to the best performing baseline, with the gap being even
more significant on novel disease scenarios, as indicated in Table 2. Appendix G
contains more detailed results for the medical settings.

4.3 Limitations of related OOD detection methods

We now discuss some shortcomings of existing OOD detection approaches closely
related to ours and indicate how our method attempts to address them. Firstly,
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vanilla ensembles use only the stochasticity of the training process and the ran-
dom initialization to obtain diverse models, but this often leads to similar clas-
sifiers, that predict the same incorrect label on OOD data [15]. Secondly, in the
absence of proper regularization, optimizing the MCD objective leads to models
that agree to a similar extent on both ID and OOD data so that one cannot
distinguish them from one another (as indicated by low AUROC scores). Fur-
thermore, nnPU does not exploit all the signal in the training set and discards
the labels of the ID data, which leads to poor performance on hard OOD data.

ERD successfully diversifies an ensemble on OOD data by using the unlabeled
set and without requiring additional information about the test distribution (e.g.
unlike nnPU which requires the true OOD ratio). We identify the key reasons
behind the good performance of our approach to be as follows: 1) utilizing the
labels of the ID training data and the complexity of deep neural networks to
diversify model outputs on OOD data; 2) choosing an appropriate disagreement
score that draws on ensemble diversity; 3) employing early stopping regulariza-
tion to prevent diversity on ID inputs.

5 Conclusions

Reliable OOD detection is essential in order to deploy classification systems in
critical applications in the medical domain. We propose a procedure that results
in an ensemble with selective disagreement only on OOD data, by successfully
leveraging unlabeled data to fine-tune the models in the ensemble. It outperforms
state-of-the-art methods that also have access to a mixture of ID and unknown
OOD samples, and even surpasses approaches that use known OOD data for
training.

References

1. Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund, D., Tenenbaum,
J., Katz, B.: ObjectNet: A large-scale bias-controlled dataset for pushing the lim-
its of object recognition models. In: Advances in Neural Information Processing
Systems 32, pp. 9453–9463 (2019)

2. Beede, E., Baylor, E., Hersch, F., Iurchenko, A., Wilcox, L., Ruamviboonsuk, P.,
Vardoulakis, L.M.: A human-centered evaluation of a deep learning system de-
ployed in clinics for the detection of diabetic retinopathy. In: Proceedings of the
CHI Conference on Human Factors in Computing Systems. p. 1–12 (2020)

3. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations
for domain adaptation. In: Advances in Neural Information Processing Systems
19. pp. 137–144 (2007)

4. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in
neural networks. In: Proceedings of the 32th International Conference on Machine
Learning (2015)

5. Cao, T., Huang, C.W., Hui, D.Y.T., Cohen, J.P.: A benchmark of medical out of
distribution detection. arXiv preprint arXiv:2007.04250 (2020)

6. Chen, Y., Wei, C., Kumar, A., Ma, T.: Self-training avoids using spurious features
under domain shift. arXiv preprint arXiv:2006.10032 (2020)



10 A. T, ifrea et al.

7. Choi, H., Jang, E., Alemi, A.A.: WAIC, but why? generative ensembles for robust
anomaly detection. arXiv preprint arXiv:1810.01392 (2018)

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-scale
hierarchical image database. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2009)

9. Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Transductive multi-view zero-shot
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 37,
2332–2345 (2015)

10. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. Proceedings of Machine Learning Research,
vol. 48, pp. 1050–1059 (2016)

11. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
March, M., Lempitsky, V.: Domain-adversarial training of neural networks. Journal
of Machine Learning Research pp. 1–35 (2016)

12. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In:
Advances in Neural Information Processing Systems 30, pp. 4878–4887 (2017)

13. Graves, A.: Practical variational inference for neural networks. In: Advances in
Neural Information Processing Systems 24, pp. 2348–2356 (2011)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016)

15. Hein, M., Andriushchenko, M., Bitterwolf, J.: Why ReLU networks yield high-
confidence predictions far away from the training data and how to mitigate the
problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2019)

16. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. In: Proceedings of the International Conference on
Learning Representations (2019)

17. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier
exposure. In: Proceedings of the International Conference on Learning Represen-
tations (2019)

18. Katsamenis, I., Protopapadakis, E., Voulodimos, A., Doulamis, A., Doulamis, N.:
Transfer learning for COVID-19 pneumonia detection and classification in chest
X-ray images. medRxiv (2020)

19. Kirichenko, P., Izmailov, P., Wilson, A.G.: Why normalizing flows fail to detect
out-of-distribution data. In: Advances in Neural Information Processing Systems
33. pp. 20578–20589 (2020)

20. Kiryo, R., Niu, G., du Plessis, M.C., Sugiyama, M.: Positive-Unlabeled learning
with non-negative risk estimator. In: Advances in Neural Information Processing
Systems 30 (2017)

21. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.
(2009)

22. Kumar, A., Ma, T., Liang, P.: Understanding self-training for gradual domain
adaptation. arXiv preprint arXiv:2002.11361 (2020)

23. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Advances in Neural Information
Processing Systems 30, pp. 6402–6413. Curran Associates, Inc. (2017)

24. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE. pp. 2278–2324 (1998)



Novel disease detection using ensembles with regularized disagreement 11

25. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-
distribution samples and adversarial attacks. In: Advances in Neural Information
Processing Systems 31, pp. 7167–7177 (2018)

26. Li, M., Soltanolkotabi, M., Oymak, S.: Gradient descent with early stopping is
provably robust to label noise for overparameterized neural networks. pp. 4313–
4324. Proceedings of Machine Learning Research (2020)

27. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image
detection in neural networks. In: Proceedings of the International Conference on
Learning Representations (2018)

28. Liu, S., Garrepalli, R., Dietterich, T., Fern, A., Hendrycks, D.: Open category
detection with PAC guarantees. pp. 3169–3178 (2018)

29. Lu, A.X., Lu, A.X., Schormann, W., Andrews, D.W., Moses, A.M.: The Cells Out
of Sample (COOS) dataset and benchmarks for measuring out-of-sample general-
ization of image classifiers. arXiv preprint arXiv:1906.07282 (2019)

30. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In:
Advances in Neural Information Processing Systems 32. p. 7047–7058 (2018)

31. Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., Lakshminarayanan, B.: Do
deep generative models know what they don’t know? In: Proceedings of the Inter-
national Conference on Learning Representations (2019)

32. Neal, R.M.: Bayesian Learning for Neural Networks. Springer-Verlag (1996)
33. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits

in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011 (2011)

34. Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J., Laksh-
minarayanan, B., Snoek, J.: Can you trust your model’s uncertainty? Evaluating
predictive uncertainty under dataset shift. In: Advances in Neural Information
Processing Systems 32, pp. 13991–14002 (2019)

35. du Plessis, M.C., Niu, G., Sugiyama, M.: Analysis of learning from positive and
unlabeled data. In: Advances in Neural Information Processing Systems 27 (2014)

36. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do CIFAR-10 classifiers generalize
to CIFAR-10? arXiv preprint arXiv:1806.00451 (2018)

37. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do ImageNet classifiers generalize
to ImageNet? arXiv preprint arXiv:1902.10811 (2019)

38. Ren, J., Liu, P.J., Fertig, E., Snoek, J., Poplin, R., Depristo, M., Dillon, J., Laksh-
minarayanan, B.: Likelihood ratios for out-of-distribution detection. In: Advances
in Neural Information Processing Systems 32, pp. 14707–14718 (2019)

39. Sastry, C.S., Oore, S.: Detecting out-of-distribution examples with in-distribution
examples and Gram matrices. arXiv preprint arXiv:1912.12510 (2019)

40. Scott, C., Blanchard, G.: Transductive anomaly detection. Tech. rep. (2008)
41. Shimodaira, H.: Improving predictive inference under covariate shift by weighting

the log-likelihood function. Journal of Statistical Planning and Inference 90, 227–
244 (2000)

42. Torralba, A., Fergus, R., Freeman, W.T.: 80 million Tiny Images: A large data
set for nonparametric object and scene recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence pp. 1958–1970 (2008)

43. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (1998)
44. Wan, Z., Chen, D., Li, Y., Yan, X., Zhang, J., Yu, Y., Liao, J.: Transductive zero-

shot learning with visual structure constraint. In: Advances in Neural Information
Processing Systems 32. pp. 9972–9982 (2019)

45. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: A novel image dataset for bench-
marking machine learning algorithms (2017)



12 A. T, ifrea et al.

46. Yilmaz, F.F., Heckel, R.: Image recognition from raw labels collected without an-
notators. arXiv preprint arXiv:1910.09055 (2019)

47. Yu, Q., Aizawa, K.: Unsupervised out-of-distribution detection by maximum clas-
sifier discrepancy. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) (2019)

48. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the
British Machine Vision Conference (BMVC) (2016)

49. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)



Novel disease detection using ensembles with regularized disagreement 13

Appendix A Related problems

Predictive uncertainty and Bayesian methods. One of the important ap-
peals of the Bayesian framework is that it directly provides uncertainty estimates
together with the predictions. Bayesian methods are particularly useful in the
case of covariate shift [41], when predictive uncertainty can be used to decide
to abstain [12] on ambiguous samples, while still allowing high-certainty predic-
tions. Approaches like MC-Dropout [10] or Deep Prior Networks [30] attempt to
tackle this problem, but the uncertainty estimates they provide are often inac-
curate on OOD samples [34]. The same problem has been observed for Bayesian
Neural Networks [32,13,4], for which sampling efficiently from the posterior over
parameters remains challenging for large models [34].

Transductive learning. Transductive learning [43] assumes that the unlabeled
test set is available together with a labeled training set and both can be used
to select a good predictor. Unlike semi-supervised learning, the transductive
framework is only concerned with performing well on the given test set and is not
interested in generalization on holdout data. In practice it has been successfully
used for problems like zero-shot learning [9,44]. Transductive OOD detection
[40] is equivalent to the scenario that we adopt in this paper if the unlabeled set
coincides with the test set used for evaluation (see also Appendix F.1).

Domain adaptation. The OOD detection problem with access to unknown
OOD data is reminiscent of unsupervised domain adaptation (UDA) [3,11,6],
in that both allow access to an unlabeled data set to adjust predictors to a
new distribution. However, unlike OOD detection, UDA aims to provide correct
predictions on a target distribution with covariate shift [41]. Hence, the UDA
problem is ill-posed if the target distribution contains data from novel classes,
not present in the source set. In novel-class scenarios, one needs to consider OOD
detection instead.

Appendix B Theoretical motivation for early stopping
regularization

In this section we show how to choose an intermediate checkpoint using the
validation set to obtain diverse models that only disagree on OOD samples
and not ID samples. This regularized disagreement is key to achieving signifi-
cantly better detection performance on hard OOD tasks than other baselines.
We give a rigorous explanation for an ensemble trained from random initial-
izations (i.e. ERD++), but the intuition carries over to ERD fine-tuned from
pretrained weights.

Recall that, in our approach, each member of the ensemble tries to fit one
label c to the entire unlabeled set U in addition to the correct labels of the
ID training set S. Ideally, after training each model with a different label c, we
obtain an ensemble of classifiers fc that disagree only on OOD data. We train
the models to fit S ∪ (U, c), where we use the notation:
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Fig. 5: Left: Sketch of the Unknown OOD setting. Right: Illustration of the unlabeled
set (U, c) partitioned into (UOOD, c), (Uc

ID, c), and (U¬c
ID , c).

(U, c) = (UID, c) ∪ (UOOD, c) = {(x, c) : x ∈ UID} ∪ {(x, c) : x ∈ UOOD} (1)

Moreover, assuming that the labels of the ID data are given by a deterministic
function y∗ : X → Y, we can partition the set (UID, c) (see Figure 5) into the
subset of samples whose ground truth label differs from c and are thus incorrectly
labeled with c, and the subset whose correct label is indeed c:

(U¬cID , c) := {(x, c) : x ∈ UID with y∗(x) 6= c} (2)

(U cID, c) := {(x, c) : x ∈ UID with y∗(x) = c} (3)

We now argue that through regularization we can control the model com-
plexity such that the classifier fits S and all of (U, c), except for (U¬cID , c). The
key intuition why regularization helps is that it is more difficult to fit the labels
c on (U¬cID , c) than on (UOOD, c), since (U¬cID , c) lies closer in covariate space to
points in the correctly labeled training set S. Hence, we can exactly fit (UOOD, c)
but not (U¬cID , c) if we adequately limit the function complexity (e.g. by choosing
a small model class, or through regularization), as illustrated in Figure 2 Left. If
the models are too complex (e.g. deep neural networks [49]), then they can even
fit the wrong labels on (U¬cID , c) (see Figure 2 Right), causing the models in the
ensemble to disagree on the entire unlabeled set U .

We use early stopping regularization, motivated by recent empirical and the-
oretical works that have found that early stopped neural networks are less vul-
nerable to label noise in the training data [46,26]. In particular, we show that
for a simple neural network trained with gradient descent there exists a stopping
time at which all points in (U, c) are fit, except for (U¬cID , c).

We begin by defining clusterable data sets.

Definition 1 ((ε, ρ)-clusterable data set).
We say that a data set D = {(xi, yi)}ni=1 is (ε, ρ)-clusterable for fixed ε >

0 and ρ ∈ [0, 1] if there exists a partitioning of it into subsets {C1, ..., CK},
which we call clusters, each with their associated unit-norm cluster center ci,
that satisfy the following conditions:
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–
⋃K
i=1 Ci = D and Ci ∩ Cj = ∅,∀i, j ∈ [K];

– all the points in a cluster lie in the ε-neighborhood of their corresponding
cluster center, i.e. ||x− ci||2 ≤ ε for all x ∈ Ci and all i ∈ [K];

– a fraction of at least 1−ρ of the points in each cluster Ci have the same label,
which we call the cluster label and denote y∗(ci). The remaining points suffer
from label noise;

– if two cluster Ci and Cj have different labels, then their centers are 2ε far
from each other, i.e. ||ci − cj ||2 ≥ 2ε;

– the clusters are balanced i.e. for all i ∈ [K], α1
n
K ≤ |Ci| ≤ α2

n
K , where α1 and

α2 are two positive constants.

According to this definition, each class may comprise several clusters, but
every cluster contains only samples from one class, up to some level of label
noise ρ ∈ [0, 1]. In our case, for a fixed label c ∈ Y, we assume that the set
S∪(U, c) is (ε, ρ)-clusterable into K clusters. We further assume that each cluster

Ci only includes a few noisy samples from (U¬cID , c), i.e.
|Ci∩(U¬cID ,c)|

|Ci| ≤ ρ and

that for clusters Ci whose cluster label is not c, i.e. y∗(ci) 6= c, it holds that
Ci ∩ (UOOD, c) = ∅.

We define the matrices the following matrices: C := [c1, ..., cK ]T ∈ RK×d and
Σ := (CCT )

⊙
Eg[φ

′(Cg)φ′(Cg)T ], with g ∼ N (0, Id) and where
⊙

denotes the
elementwise product. We use ‖ · ‖ and λmin(·) to denote the spectral norm and
the smallest eigenvalue of a matrix, respectively.

For prediction, we consider a 2-layer neural network model with p hidden

units, where p & K2‖C‖4
λmin(Σ)4 . We can write this model as follows:

x 7→ f(x;W ) = vTφ(Wx), (4)

The first layer weights W are initialized with random values drawn from
N (0, 1), while the last layer weights v have fixed values: half of them are set to 1/p
and the other half is −1/p. We consider activation functions φ with bounded first
and second order derivatives, i.e. |φ′(x)| ≤ Γ and φ′′(x) ≤ Γ . We use the squared
loss for training, i.e. L(W ) = 1

2

∑n
i=0(yi − f(xi;W ))2 and take gradient descent

steps to find the optimum of the loss function, i.e. Wτ+1 = Wτ−η∇L(Wτ ), where
the step size is set to η ' K

n‖C‖2 . We can now state the following proposition:

Proposition 1. Assume that ρ ≤ δ/8 and ε ≤ αδλmin(Σ)2/K2, where δ is a
constant such that δ ≤ 2

|Y−1| and α is a constant that depends on Γ . Then it

holds with high probability 1 − 3/K100 − Ke−100d over the initialization of the
weights that the neural network trained on S∪ (U, c) perfectly fits S, (U cID, c) and

(UOOD, c), but not (U¬cID , c), after T = c4
‖C‖2

λmin(Σ) iterations.

This result shows that there exists an optimal stopping time at which the
neural network predicts the correct label on all ID points and the label c on all
the OOD points. As we will see later in the proof, the proposition is derived from
a more general result which shows that the early stopped model predicts these
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labels not only on the points in U but also in an ε-neighborhood around cluster
centers. Hence, an ERD ensemble can be used to detect holdout OOD samples
similar to the ones in U , after being tuned on U . This follows the intuition that
classifiers regularized with early stopping are smooth and generalize well.

The clusterable data model is generic enough to include data sets with non-
linear decision boundaries. Moreover, notice that the condition in Proposition 1 is
satisfied when S∪(UID, c) is (ε, ρ)-clusterable and (UOOD, c) is ε-clusterable and if
the cluster centers of (UOOD, c) are at distance at least 2ε from the cluster centers
of S ∪ (UID, c). A situation in which these requirements are met is, for instance,
when the OOD data comes from novel classes, when all classes (including the
unseen ones that are not in the training set) are well separated, with cluster
centers at least 2ε away in Euclidean distance. In addition, in order to limit
the amount of label noise in each cluster, it is necessary that the number of
incorrectly labeled samples in (U¬cID , c) is small, relative to the size of S.

In practice, we only need that the decision boundary separating (UOOD, c)
from S is easier to learn than the classifier required to interpolate the incorrectly
labeled (U¬cID , c), which is often the case, provided that (UOOD, c) is large enough
and the OOD samples come from novel classes.

We now provide the proof for Proposition 1:

Proof. We begin by restating a result from [26]:

Theorem 1 ([26]).
Let D := {(xi, yi)} ∈ R

d × Y be an (ε, ρ)-clusterable training set, with ε ≤
c1δλmin(Σ)2/K2 and ρ ≤ δ/8, where δ is a constant that satisfies δ ≤ 2

|Y|−1 .

Consider a two-layer neural network as described above, and train it with gradient
descent starting from initial weights sampled i.i.d. from N (0, 1). Assume further
that the step size is η = c2

K
n‖C‖2 and that the number of hidden units p is

at least c3
K2‖C‖4
λmin(Σ)4 . Under these conditions, it holds with probability at least

1 − 3/K100 −Ke−100d over the random draws of the initial weights, that after

T = c4
‖C‖2

λmin(Σ) gradient descent steps, the neural network x 7→ f(x;WT ) predicts

the correct cluster label for all points in the ε-neighborhood of the cluster center,
namely:

arg max
y∈Y
|f(x;WT )− ω(y)| = y∗(ci), for all x with ‖x− ci‖2 ≤ ε and ∀i ∈ [K],

(5)

where ω : Y → {0, 1}|Y| yields one-hot embeddings of the labels. The constants
c1, c2, c3, c4 depend only on Γ .

Notice that, under the assumptions introduced above, the set S ∪ (U, c) is
(ε, ρ)-clusterable, since the incorrectly labeled ID points in (U¬cID , c) constitute at
most a fraction ρ of the clusters they belong to. As a consequence, Proposition 1
follows directly from Theorem 1.
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Appendix C Disagreement score for OOD detection

As we outlined in Section 3, in this paper we introduce a novel way to aggregate
ensemble outputs using a disagreement score. The aggregation metric is tailored
to exploit ensemble diversity, which makes it particularly beneficial for ERD. On
the other hand, Vanilla Ensembles only rely on the stochasticity of the training
process and the random initializations of the weights to produce diverse models,
which often leads to classifiers that are strikingly similar as we show in Figure 6
for a few 2D data sets. As a consequence, using our disagreement score (Avg◦ρ)
for Vanilla Ensembles can sometimes hurt OOD detection performance. To see
this, consider the extreme situation in which the models in the ensemble are
identical, i.e. f1 = f2. Then it follows that (Avg ◦ ρ)(f1(x), f2(x)) = 0, for all
test points x and for any function ρ that satisfies the distance axioms.

Fig. 6: Relying only on the randomness of SGD and of the weight initialization to
diversify models is not enough, as it often yields similar classifiers. Each column
shows a different predictor trained from random initializations with Adam. All
models have the same 1-hidden layer MLP architecture.

Table 3 shows that (Avg ◦ ρ) leads to worse OOD detection performance
for Vanilla Ensembles, compared to using the entropy of the average softmax
score, (H ◦ Avg), which was proposed in prior work. However, if the ensembles
are indeed diverse, as we argue is the case for our method ERD (see Appendix
B), then there is a clear advantage to using a score that, unlike (H ◦Avg), takes
diversity into account, as shown in Table 3.

Appendix D Experiment details

D.1 Baselines

Standard baselines. We compare our method against a wide range of baselines
that require different access to OOD data for training, as indicated in Table 4.
When it comes to methods that use no OOD data for training, the current SOTA
on the usual benchmarks is the Gram method [39]. Other approaches that use no
OOD data include vanilla ensembles [23], methods that rely on deep generative
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Table 3: The disagreement score that we propose (Avg◦ρ) exploits ensemble diversity
and benefits in particular ERD ensembles. OOD detection performance is significantly
improved when using (Avg ◦ ρ) compared to the previously proposed (H ◦Avg) metric.
Since Vanilla Ensemble are not diverse enough, a score that relies on model diversity can
hurt OOD detection performance. We highlight the AUROC and the TNR@95 obtained
with the score function that is best for Vanilla Ensemble and the best for ERD.

ID data OOD data
Vanilla

Ensembles
(H ◦ Avg)

Vanilla
Ensembles
(Avg ◦ ρ)

ERD
(H ◦ Avg)

ERD
(Avg ◦ ρ)

AUROC ↑ / TNR@95 ↑

SVHN CIFAR10 0.97 / 0.88 0.96 / 0.89 0.86 / 0.85 0.99 / 0.97
CIFAR10 SVHN 0.92 / 0.78 0.91 / 0.78 0.92 / 0.92 1.00 / 1.00
CIFAR100 SVHN 0.84 / 0.48 0.79 / 0.46 0.36 / 0.35 1.00 / 1.00
SVHN[0:4] SVHN[5:9] 0.92 / 0.69 0.91 / 0.69 0.94 / 0.66 0.94 / 0.66
CIFAR10[0:4] CIFAR10[5:9] 0.80 / 0.39 0.80 / 0.39 0.91 / 0.65 0.91 / 0.66
CIFAR100[0:49] CIFAR100[50:99] 0.78 / 0.35 0.76 / 0.34 0.63 / 0.38 0.81 / 0.40

Average 0.87 / 0.60 0.86 / 0.59 0.77 / 0.64 0.94 / 0.78

models [31,7], which tend to give undesirable results for OOD detection [19],
or various Bayesian approaches [10,4] that are often poorly calibrated on OOD
data [34]. Moreover, Outlier Exposure [17] and Deep Prior Networks (DPN) [30]
use TinyImages for training as known outliers, irrespective of the OOD set used
for evaluation (Different OOD). On the other hand, the Mahalanobis baseline
[25] is tuned on samples from the same OOD distribution used for evaluation.

Table 4: Related OOD detection methods and the OOD data that they use.
Baseline Access to OOD

Vanilla Ensemble [23] No OOD
Gram method [39] No OOD
Generative [31,7] No OOD

nnPU [20] Unknown OOD
MCD [47] Unknown OOD
ERD (Ours) Unknown OOD

Outlier Exposure [17] Different OOD
DPN [30] Different OOD

ODIN [27] Oracle OOD
Mahalanobis [25] Oracle OOD

Unknown OOD and PU learning. We also compare our method to ap-
proaches that assume the same setting, in which an unlabeled set with ID and
OOD samples is available. The recently proposed MCD method [47] trains an
ensemble of two classifiers with different types of predictive distributions on the
unlabeled samples: one model gives high-entropy predictions, while the other
has low entropy. Furthermore, positive-unlabeled (PU) learning [35] considers a
binary classification setting, in which the labeled data comes from one class (i.e.
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ID samples, in our case), while the unlabeled set contains a mixture of samples
from both classes. Crucially, PU learning methods, like nnPU [20], require oracle
knowledge of the ratio of OOD samples in the unlabeled set.

Unknown OOD – new baselines. In addition to these methods, we propose
two more baselines that use an unlabeled set. Firstly, we present a version of
the Mahalanobis approach (Mahal-U ) that is calibrated using the unlabeled set.
Secondly, since PU learning requires access to the OOD ratio of the unlabeled
set, we also consider a less burdensome alternative: a binary classifier trained
to separate the training data from the unlabeled set and regularized with early
stopping like our method.

D.2 Tuning hyperparameters

For all baselines we use the hyperparameters suggested by the authors for the
respective data sets (e.g. different hyperparameters for CIFAR10 or ImageNet).
For all methods, we use pretrained models provided by the authors. However,
we note that for the novel-class settings, pretraining on the entire training set
means that the model is exposed to the OOD classes as well, which is undesirable.
Therefore, for these settings we pretrain only on the split of the training set that
contains the ID classes. Since the classification problem is similar to the original
one of training on the entire training set, we use the same hyperparameters that
the authors report in the original papers.

Moreover, we point out that even though different methods use different
model architectures, that is not inherently unreasonable when the goal is OOD
detection, since it is not clear if a complex model is more desirable than a
smaller model. For this reason, we use the model architecture recommended by
the authors of the baselines and which was used to produce the good results
reported in their published works. For Vanilla Ensembles and for ERD we show
results for different architectures in Appendix F.6.

– Vanilla Ensembles [23]: We train an ensemble on the training set according
to the true labels. For a test sample, we average the outputs of the softmax
probabilities predicted by the models, and use the entropy of the resulting
distribution as the score for the hypothesis test described in Section 3. We
use ensembles of 5 models, with the same architecture and hyperparame-
ters as the ones used for ERD. Hyperparameters are tuned to achieve good
validation accuracy.

– Gram method [39]: The Gram baseline is similar to the Mahalanobis
method in that both use the intermediate feature representations obtained
with a deep neural network to determine whether a test point is an outlier.
However, what sets the Gram method apart is the fact that it does not need
any OOD data for training or calibration. We use the pretrained models
provided by the authors, or train our own, using the same methodology as
described for the Mahalanobis baseline. For OOD detection, we use the code
published by the authors. We note that for MLP models, the Gram method
is difficult to tune and we could not find a configuration that works well,
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despite our best efforts and following the suggestions proposed during our
communication with the authors.

– Deep Prior Networks (DPN) [30]: DPN is a Bayesian Method that
trains a neural network (Prior Network) to parametrize a Dirichlet distri-
bution over the class probabilities. We train a WideResNet WRN-28-10 for
100 epochs using SGD with momentum 0.9, with an initial learning rate of
0.01, which is decayed by 0.2 at epochs 50, 70, and 90. For MNIST, we use
EMINST/Letters as OOD for tuning. For all other settings, we use TinyIm-
ages as OOD for tuning.

– Outlier Exposure [17]: This approach makes a model’s softmax predic-
tions close to the uniform distribution on the known outliers, while main-
taining a good classification performance on the training distribution. We
use the WideResNet architecture (WRN) [48]. For fine-tuning, we use the
settings recommended by the authors, namely we train for 10 epochs with
learning rate 0.001. For training from scratch, we train for 100 epochs with
an initial learning rate of 0.1. When the training data set is either CI-
FAR10/CIFAR100 or ImageNet, we use the default WRN parameters of
the author’s code, namely 40 layers, 2 widen-factor, droprate 0.3. When the
training dataset is SVHN, we use the author’s recommended parameters of
16 layers, 4 widen-factor and droprate 0.4. All settings use the cosine an-
nealing learning rate scheduler provided with the author’s code, without any
modifications. For all settings, we use TinyImages as known OOD data dur-
ing training. In Section F.4 we show results for known OOD data that is
similar to the OOD data used for testing.

– Mahalanobis [25]: The method pretrains models on the labeled training
data. For a test data point, it uses the intermediate representations of each
layer as “extracted features”. It then performs binary classification using
logistic regression using these extracted features. In the original setting, the
classification is done on “training” ID vs “training” OOD samples (which are
from the same distribution as the test OOD samples). Furthermore, hyper-
parameter tuning for the optimal amount of noise is performed on validation
ID and OOD data. We use the WRN-28-10 architecture, pretrained for 200
epochs. The initial learning rate is 0.1, which is decayed at epochs 60, 120,
and 160 by 0.2. We use SGD with momentum 0.9, and the standard weight
decay of 5 · 10−4. The code published for the Mahalanobis method performs
a hyperparameter search automatically for each of the data sets.

The following baselines assume the same Unknown OOD setting as ERD, in
which one has access to both a labeled ID training set S and an unlabeled set
with an unknown mixture of ID and OOD samples U .

– Non-negative PU learning (nnPU) [20]: The method trains a binary
predictor to distinguish between a set of known positives (in our case the ID
data) and a set that contains a mixture of positives and negatives (in our case
the unlabeled set). To prevent the interpolation of all the unlabeled samples,
[20] proposes a regularized objective. It is important to note that most train-
ing objectives in the PU learning literature require that the ratio between
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the positives and negatives in the unlabeled set is known or easy to estimate.
For our experiments we always use the exact OOD ratio to train the nnPU
baseline. Therefore, we obtain an upper bound on the AUROC/TNR@95. If
the ratio is estimated from finite samples, then estimation errors may lead
to slightly worse OOD detection performance. We perform a grid search over
the learning rate and the threshold that appears in the nnPU regularizer and
pick the option with the best validation accuracy measured on a holdout set
with only positive samples (in our case, ID data).

– Maximum Classifier Discrepancy (MCD) [47]: The MCD method trains
two classifiers at the same time, and makes them disagree on the unlabeled
data, while maintaining good classification performance. We use the WRN-
28-10 architecture as suggested in the paper. We did not change the default
parameters which came with the author’s code, so weight decay is 10−4, and
the optimizer is SGD with momentum 0.9. When available (for CIFAR10
and CIFAR100), we use the pretrained models provided by the authors. For
the other training datasets, we use their methodology to generate pretrained
models: We train a WRN-28-10 for 200 epochs. The learning rate starts at
0.1 and drops by a factor of 10 at 50% and 75% of the training progress.

– Mahalanobis-U: This is a slightly different version of the Mahalanobis
baseline, for which we use early-stopped logistic regression to distinguish
between the training set and an unlabeled set with ID and OOD samples
(instead of discriminating a known OOD set from the inliers). The early
stopping iteration is chosen to minimize the classification errors on a valida-
tion set that contains only ID data (recall that we do not assume to know
which are the OOD samples).

In addition to these approaches that have been introduced in prior work,
we also propose a strong novel baseline that that bares some similarity to PU
learning and to ERD.

– Binary classifier The approach consists in discriminating between the la-
beled ID training set and the mixed unlabeled set, that contains both ID and
OOD data. We use regularization to prevent the trivial solution for which
the entire unlabeled set is predicted as OOD. Unlike PU learning, the bi-
nary classifier does not require that the OOD ratio in the test distribution
is known. The approach is similar to a method described in [40] which also
requires that the OOD ratio of the unlabeled set is known. We tune the
learning rate and the weight of the unlabeled samples in the training loss
by performing a grid search and selecting the configuration with the best
validation accuracy, computed on a holdout set containing only ID samples.
We note that the binary classifier that appears in Appendix G in the medical
benchmark, is not the same as this baseline. For more details on the binary
classifier that appears in the medical data experiments we refer the reader
to [5].
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D.3 Training configuration for ERD

For ERD we always use hyperparameters that give the best validation accuracy
when training a model on the ID training set. In other words, we pick hyperpa-
rameter values that lead to good ID generalization and do not perform further
hyperparameter tuning for the different OOD data sets on which we evaluate
our approach.

For MNIST and FashionMNIST, we train ensembles of 3-layer MLP models
with ReLU activations. Each intermediate layer has 100 neurons. The models
are optimized using Adam, with a learning rate of 0.001, for 10 epochs.

For SVHN, CIFAR10/CIFAR100 and ImageNet, we train ensembles of ResNet20
[14]. The models are initialized with weights pretrained for 100 epochs on the
labeled training set. We fine-tune each model for 10 epochs using SGD with
momentum 0.9, and a learning rate of 0.001. The weights are trained with an `2
regularization coefficient of 5e − 4. We use a batch size of 128 for all scenarios,
unless explicitly stated otherwise. We used the same hyperparameters for all
settings.

For pretraining, we perform SGD for 100 epochs and use the same architec-
ture and hyperparameters as described above, with the exception of the learning
rate that starts at 0.1, and is multiplied by 0.2 at epochs 50, 70 and 90.

Apart from ERD, which fine-tunes the ensemble models starting from pre-
trained weights, we also present in the appendix results for ERD++. This variant
of our method trains the models from random initializations, and hence needs
more iterations to converge, making it more computationally expensive than
ERD. We train all models in the ERD++ ensembles for 100 epochs with a
learning rate that starts at 0.1, and is multiplied by 0.2 at epochs 50, 70 and 90.
All other hyperparameters are the same as for ERD ensembles.

For the medical data sets, we train a Densenet-121 as the authors do in the
original paper [5]. For ERD++, we do not use random weight initializations,
but instead we start with the ImageNet weights provided with Tensorflow. The
training configuration is exactly the same as for ResNet20, except that we use a
batch size of 32 due to GPU memory restrictions, and for fine tuning we use a
constant learning rate of 10−5.

Computation cost. For ERD as few as three epochs of fine-tuning are enough
on average to achieve the performance that we report. This amounts to around
2 minutes if the models in the ensemble are fine-tuned in parallel on NVIDIA
GeForce GTX 1080 Ti GPUs.

Appendix E ID and OOD data sets

E.1 Data sets

For evaluation, we use the following image data sets: MNIST [24], Fashion
MNIST [45], SVHN [33], CIFAR10 and CIFAR100 [21].
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For the experiments using MNIST and FashionMNIST the training set size is
50K, the validation size is 10K, and the test ID and test OOD sizes are both 10K.
For SVHN, CIFAR10 and CIFAR100, the training set size is 40K, the validation
size is 10K, and the unlabeled set contains 10K samples: 5K are ID and 5K are
OOD. For evaluation, we use a holdout set of 10K examples (half ID, half OOD).
For the settings that use half of the classes as ID and the other half as OOD, all
the sizes are divided by 2.

E.2 Samples for the settings with novel classes

(a) (b)

Fig. 7: (a) Data samples for the MNIST/FashionMNIST splits. (b) Data samples
for the CIFAR10/SVHN splits.

Appendix F More experiments

F.1 Evaluation on the unlabeled set

In the main text we describe how one can leverage the unlabeled set U to obtain
an OOD detection algorithm that accurately identifies outliers at test time that
similar to the ones in U . It is, however, possible to also use our method ERD
to flag the OOD samples contained in the same set U used for fine-tuning the
ensemble. In Table 5 we show that the OOD detection performance of ERD is
similar regardless of whether we use U for evaluation, or a holdout test set T
drawn from the same distribution as U .
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Table 5: Comparison between the OOD detection performance of ERD when
using a holdout test set T for evaluation, or the same unlabeled set U that was
used for fine-tuning the models.

ID data OOD data
ERD

(eval on T )
ERD

(eval on U)
AUROC ↑ / TNR@95 ↑

SVHN CIFAR10 1.00 / 0.99 1.00 / 0.99
CIFAR10 SVHN 1.00 / 1.00 1.00 / 1.00
CIFAR100 SVHN 1.00 / 1.00 1.00 / 1.00

FMNIST[0,2,3,7,8] FMNIST[1,4,5,6,9] 0.94 / 0.67 0.94 / 0.67
SVHN[0:4] SVHN[5:9] 0.95 / 0.74 0.96 / 0.79
CIFAR10[0:4] CIFAR10[5:9] 0.93 / 0.70 0.93 / 0.69
CIFAR100[0:49] CIFAR100[50:99] 0.82 / 0.44 0.80 / 0.36

Average 0.95 / 0.79 0.95 / 0.79

F.2 OOD detection for data with covariate shift

In this section we evaluate the baselines and the method that we propose on
settings in which the OOD data suffers from covariate shift [41]. The goal is to
identify all samples that come from the shifted distribution, regardless of how
strong the shift is. Notice that mild shifts may be easier to tackle by domain
adaptation algorithms, but when the goal is OOD detection they pose a much
more difficult challenge.

We want to stress that in practice one may not be interested in identifying
all samples with distribution shift as OOD, since a classifier may still produce
correct predictions on some of them. In contrast, when data suffers from covariate
shift we can try to learn predictors that perform well on both the training and
the test distribution, and we may use a measure of predictive uncertainty to
identify only those test samples on which the classifier cannot make confident
predictions. Nevertheless, we use these covariate shift settings as a challenging
OOD detection benchmark and show in Table 7 that our method ERD does
indeed outperform prior baselines on these difficult settings.

We use as outliers corrupted variants of CIFAR10 and CIFAR100 [16], as
well as a scenario where ImageNet [8] is used as ID data and ObjectNet [1]
as OOD, both resized to 32x32. Figure 8 shows samples from these data sets.
The Gram and nnPU baselines do not give satisfactory results on the difficult
CIFAR10/CIFAR100 settings in Table 1 and thus we do not consider them for
the distribution shift cases. For the Unknown OOD methods (i.e. MCD, Mahal-
U and ERD/ERD++) we evaluate on the same unlabeled set that is used for
training (see the discussion in Section F.1).

Furthermore, we present results on distinguishing between CIFAR10 [21] and
CIFAR10v2 [36], a data set meant to be drawn from the same distribution as
CIFAR10 (generated from the Tiny Images collection [42]). In [37], the authors
argue that CIFAR10 and CIFAR10v2 come from very similar distributions. They
provide supporting evidence by training a binary classifier to distinguish between



Novel disease detection using ensembles with regularized disagreement 25

Fig. 8: Left: Samples from ImageNet and ObjectNet taken from the original
paper by [1]. Right: Data samples for the corrupted CIFAR10-C data set.

them, and observing that the accuracy that is obtained of 52.9% is very close to
random.

Our experiments show that the two data sets are actually distinguishable,
contrary to what previous work has argued. First, our own binary classifier
trained on CIFAR10 vs CIFAR10v2 obtains a test accuracy of 67%, without any
hyperparameter tuning. The model we use is a ResNet20 trained for 200 epochs
using SGD with momentum 0.9. The learning rate is decayed by 0.2 at epochs
90, 140, 160 and 180. We use 1600 examples from each data set for training, and
we validate using 400 examples from each data set.

Table 6: OOD detection performance on CIFAR10 vs CIFAR10v2

ID data OOD data
Vanilla
Ensembles

DPN OE Mahal. MCD Mahal-U ERD ERD++

AUROC ↑/TNR@95 ↑

CIFAR10 CIFAR10v2 0.64/0.13 0.63/0.09 0.64/0.12 0.55/0.08 0.58/0.10 0.56/0.07 0.76/0.26 0.91/0.80

Our OOD detection experiments (presented in Table 6) show that most base-
lines are able to distinguish between the two data sets, with ERD achieving the
highest performance. The methods which require OOD data for tuning (Outlier
Exposure and DPN) use CIFAR100.
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Table 7: OOD detection performance on data with covariate shift. For ERD and
vanilla ensembles, we train 5 ResNet20 models for each setting. The evaluation
metrics are computed on the unlabeled set.

ID data OOD data
Vanilla
Ensembles

DPN OE Mahal. MCD Mahal-U ERD ERD++

AUROC ↑/TNR@95 ↑

CIFAR10 CIFAR10-C sev 2 (A) 0.68/0.20 0.73/0.31 0.70/0.20 0.84/0.53 0.82/0.50 0.75/0.38 0.96/0.86 0.99/0.95
CIFAR10 CIFAR10-C sev 2 (W) 0.51/0.05 0.47/0.03 0.52/0.06 0.58/0.08 0.52/0.06 0.55/0.07 0.68/0.19 0.86/0.41
CIFAR10 CIFAR10-C sev 5 (A) 0.84/0.49 0.89/0.60 0.86/0.54 0.94/0.80 0.95/0.84 0.88/0.63 1.00/0.99 1.00/1.00
CIFAR10 CIFAR10-C sev 5 (W) 0.60/0.10 0.72/0.10 0.63/0.11 0.78/0.27 0.60/0.08 0.68/0.12 0.98/0.86 1.00/1.00

CIFAR100 CIFAR100-C sev 2 (A) 0.68/0.20 0.62/0.18 0.65/0.19 0.82/0.48 0.72/0.29 0.67/0.22 0.94/0.76 0.97/0.86
CIFAR100 CIFAR100-C sev 2 (W) 0.52/0.06 0.32/0.03 0.52/0.06 0.55/0.07 0.52/0.06 0.55/0.06 0.71/0.19 0.86/0.44
CIFAR100 CIFAR100-C sev 5 (A) 0.78/0.37 0.74/0.36 0.76/0.37 0.92/0.72 0.91/0.65 0.84/0.55 0.99/0.97 1.00/0.99
CIFAR100 CIFAR100-C sev 5 (W) 0.64/0.14 0.49/0.12 0.62/0.13 0.71/0.19 0.60/0.10 0.63/0.13 0.96/0.71 0.98/0.89

Tiny ImageNet Tiny ObjectNet 0.82/0.49 0.70/0.32 0.79/0.37 0.75/0.26 0.99/0.98 0.72/0.25 0.98/0.88 0.99/0.98

Average 0.67/0.23 0.63/0.23 0.67/0.23 0.76/0.38 0.74/0.39 0.70/0.27 0.91/0.71 0.96/0.83

F.3 Results with a smaller unlabeled set

We now show that our method performs well even when the unlabeled set is sig-
nificantly smaller. In particular, we show in the table below that ERD maintains
a high AUROC and TNR@95 even when only 1,000 unlabeled samples are used
for fine-tuning (500 ID and 500 OOD).

Table 8: Experiments with a test set of size 1,000, with an equal number of ID
and OOD test samples. For ERD and vanilla ensembles, we train 5 ResNet20
models for each setting. The evaluation metrics are computed on the unlabeled
set.

ID data OOD data
Vanilla
Ensembles

DPN OE Mahal. MCD Mahal-U ERD

AUROC ↑/TNR@95 ↑

SVHN CIFAR10 0.97/0.88 1.00/1.00 1.00/1.00 0.99/0.98 0.97/0.85 0.99/0.95 1.00/0.99
CIFAR10 SVHN 0.92/0.78 0.95/0.85 0.97/0.89 0.99/0.96 1.00/0.98 0.99/0.96 1.00/1.00
CIFAR100 SVHN 0.84/0.48 0.77/0.44 0.82/0.50 0.98/0.90 0.97/0.73 0.98/0.92 0.99/1.00
SVHN[0:4] SVHN[5:9] 0.92/0.69 0.87/0.19 0.85/0.52 0.92/0.71 0.91/0.51 0.91/0.63 0.97/0.86
CIFAR10[0:4] CIFAR10[5:9] 0.80/0.39 0.82/0.32 0.82/0.41 0.79/0.27 0.69/0.25 0.64/0.13 0.87/0.50
CIFAR100[0:49] CIFAR100[50:99] 0.78/0.35 0.70/0.26 0.74/0.31 0.72/0.20 0.70/0.26 0.72/0.19 0.79/0.38

CIFAR10 CIFAR10-C sev 2 (A) 0.68/0.20 0.73/0.31 0.70/0.20 0.84/0.53 0.82/0.50 0.75/0.38 0.91/0.71
CIFAR10 CIFAR10-C sev 2 (W) 0.51/0.05 0.47/0.03 0.52/0.06 0.58/0.08 0.52/0.06 0.55/0.07 0.57/0.09
CIFAR10 CIFAR10-C sev 5 (A) 0.84/0.49 0.89/0.60 0.86/0.54 0.94/0.80 0.95/0.84 0.88/0.63 0.99/0.95
CIFAR10 CIFAR10-C sev 5 (W) 0.60/0.10 0.72/0.10 0.63/0.11 0.78/0.27 0.60/0.08 0.68/0.12 0.92/0.67

CIFAR100 CIFAR100-C sev 2 (A) 0.68/0.20 0.62/0.18 0.65/0.19 0.82/0.48 0.72/0.29 0.67/0.22 0.84/0.48
CIFAR100 CIFAR100-C sev 2 (W) 0.52/0.06 0.32/0.03 0.52/0.06 0.55/0.07 0.52/0.06 0.55/0.06 0.55/0.07
CIFAR100 CIFAR100-C sev 5 (A) 0.78/0.37 0.74/0.36 0.76/0.37 0.92/0.72 0.91/0.65 0.84/0.55 0.96/0.80
CIFAR100 CIFAR100-C sev 5 (W) 0.64/0.14 0.49/0.12 0.62/0.13 0.71/0.19 0.60/0.10 0.63/0.13 0.81/0.25

Average 0.75/0.37 0.72/0.34 0.75/0.38 0.82/0.51 0.78/0.44 0.77/0.42 0.87/0.62
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F.4 More results for Outlier Exposure

Table 9: Results for Outlier Exposure, when using the same corruption type, but
with a higher/lower severity, as OOD data seen during training.

ID data OOD data OE (trained on sev5) OE (trained on sev2)
AUROC ↑

CIFAR10 CIFAR10-C sev 2 (A) 0.89 N/A
CIFAR10 CIFAR10-C sev 2 (W) 0.65 N/A
CIFAR10 CIFAR10-C sev 5 (A) N/A 0.98
CIFAR10 CIFAR10-C sev 5 (W) N/A 0.78

CIFAR100 CIFAR100-C sev 2 (A) 0.85 N/A
CIFAR100 CIFAR100-C sev 2 (W) 0.59 N/A
CIFAR100 CIFAR100-C sev 5 (A) N/A 0.97
CIFAR100 CIFAR100-C sev 5 (W) N/A 0.67

Average 0.87 0.98

The Outlier Exposure method needs access to a set of OOD samples during
training. The numbers we report in the rest of paper for Outlier Exposure are
obtained by using the TinyImages data set as the OOD samples that are seen
during training. In this section we explore the use of an OODtrain data set that
is more similar to the OOD data observed at test time. This is a much easier
setting for the Outlier Exposure method: the closer OODtrain is to OODtest,
the easier it will be for the model tuned on OODtrain to detect the test OOD
samples.

In Table 9 we focus only on the settings with corruptions. For each corruption
type, we use the lower severity corruption as OODtrain and evaluate on the higher
severity data and vice versa. We report for each metric the average taken over
all corruptions (A), and the value for the worst-case setting (W).

F.5 Results on MNIST and FashionMNIST

Table 10: Results on MNIST/FashionMNIST settings. For ERD and vanilla en-
sembles, we train 5 3-hidden layer MLP models for each setting. The evaluation
metrics are computed on the unlabeled set.

ID data OOD data
Vanilla
Ensembles

DPN OE Mahal. nnPU MCD Mahal-U
Bin.
Classif.

ERD ERD++

AUROC ↑/TNR@95 ↑

MNIST FMNIST 0.81/0.01 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/0.98 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
FMNIST MNIST 0.87/0.42 1.00/1.00 0.68/0.16 0.99/0.97 1.00/1.00 1.00/1.00 0.99/0.96 1.00/1.00 1.00/1.00 1.00/1.00
MNIST[0:4] MNIST[5:9] 0.94/0.72 0.99/0.97 0.95/0.78 0.99/0.98 0.99/0.97 0.96/0.76 0.99/0.98 0.99/0.94 0.99/0.96 0.99/0.97
FMNIST[0,2,3,7,8] FMNIST[1,4,5,6,9] 0.64/0.07 0.77/0.15 0.66/0.12 0.77/0.20 0.95/0.71 0.78/0.30 0.82/0.39 0.95/0.66 0.94/0.67 0.94/0.68

Average 0.82/0.30 0.94/0.78 0.82/0.51 0.94/0.79 0.98/0.92 0.94/0.76 0.95/0.83 0.98/0.90 0.98/0.91 0.98/0.91
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For FashionMNIST we chose this particular split (i.e. classes 0,2,3,7,8 vs classes
1,4,5,6,9) because the two partitions are more similar to each other. This makes
OOD detection more difficult than the 0-4 vs 5-9 split.

F.6 Vanilla and ERD Ensembles with different architectures

In this section we present OOD detection results for Vanilla and ERD ensembles
with different architecture choices, and note that the better performance of our
method is maintained across model classes. Moreover, we observe that ERD
benefits from employing more complex models, like the WideResNet.

Table 11: Results with three different architectures for Vanilla and ERD ensem-
bles. All ensembles comprise 5 models. For the corruption data sets, we report
for each metric the average taken over all corruptions (A), and the value for the
worst-case setting (W). The evaluation metrics are computed on the unlabeled
set.

VGG16 ResNet20 WideResNet-28-10

ID data OOD data
Vanilla

Ensembles
ERD

Vanilla
Ensembles

ERD
Vanilla

Ensembles
ERD

AUROC ↑ / TNR@95 ↑

SVHN CIFAR10 0.97 / 0.88 0.99 / 0.94 0.97 / 0.88 0.99 / 0.97 0.96 / 0.86 1.00 / 0.99
CIFAR10 SVHN 0.88 / 0.69 1.00 / 1.00 0.92 / 0.78 1.00 / 1.00 0.94 / 0.81 1.00 / 1.00
SVHN[0:4] SVHN[5:9] 0.89 / 0.60 0.93 / 0.63 0.92 / 0.69 0.94 / 0.66 0.91 / 0.62 0.96 / 0.78
CIFAR10[0:4] CIFAR10[5:9] 0.74 / 0.29 0.91 / 0.63 0.80 / 0.39 0.91 / 0.66 0.80 / 0.35 0.94 / 0.71

CIFAR10 CIFAR10-C sev 2 (A) 0.66 / 0.17 0.94 / 0.79 0.68 / 0.20 0.96 / 0.86 0.69 / 0.18 0.98 / 0.90
CIFAR10 CIFAR10-C sev 2 (W) 0.51 / 0.05 0.68 / 0.19 0.51 / 0.05 0.68 / 0.19 0.51 / 0.05 0.84 / 0.35
CIFAR10 CIFAR10-C sev 5 (A) 0.80 / 0.41 0.99 / 0.96 0.84 / 0.49 1.00 / 0.99 0.84 / 0.47 1.00 / 1.00
CIFAR10 CIFAR10-C sev 5 (W) 0.58 / 0.10 0.95 / 0.72 0.60 / 0.10 0.98 / 0.86 0.59 / 0.09 0.99 / 0.97

Average 0.75 / 0.40 0.92 / 0.73 0.78 / 0.45 0.93 / 0.77 0.78 / 0.43 0.96 / 0.84

Appendix G Medical OOD detection benchmark

The medical OOD detection benchmark is organized as follows. There are four
training (ID) data sets, from three different domains: two data sets with chest
X-rays and one with fundus imaging. For each ID data set, the authors consider
the three use cases introduced in Section 4.

The authors evaluate a number of methods on all these scenarios. The meth-
ods can be roughly categorized as follows:

1. Data-only methods: Fully non-parametric approaches like kNN.
2. Classifier-only methods: Methods that use a classifier trained on the training

set, e.g. ODIN [27], Mahalanobis [25]. ERD falls into this category as well.
3. Methods with Auxiliary Models: Methods that use an autoencoder or a gen-

erative model, like a Variational Autoencoder or a Generative Adversarial
Network. Some of these approaches can be expensive to train and difficult
to optimize and tune.
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We stress the fact that for most of these methods the authors use (known)
OOD data during training. Oftentimes the OOD samples observed during train-
ing come from a data set that is very similar to the OOD data used for eval-
uation. For exact details regarding the data sets and the methods used for the
benchmark, we refer the reader to [5].

Fig. 9: AUROC averaged over all scenarios in the medical OOD detection bench-
mark [5]. The values for all the baselines are computed using code made available
by the authors of [5]. Notably, most of the baselines assume oracle knowledge of
OOD data at training time.

In addition, in Figure 10 we present the average taken over only the novel-
class settings in the medical benchmark. We observe that the performance of
all methods is drastically affected, all of them performing much worse than the
average presented in Figure 9. This stark decrease in AUROC and TNR@95
indicates that novelty detection is indeed a challenging task for OOD detection
methods even in realistic settings. Nevertheless, our method maintains a better
performance than the baselines.

Fig. 10: AUROC averaged over the novel-class scenarios in the medical OOD
detection benchmark [5], i.e. only use case 3. Baselines ordered as in Figure 9.

In Figures 11, 12, 13 we present AUROC and AUPR (Area under the Preci-
sion Recall curve) for ERD for each of the training data sets, and each of the use
cases. Figure 9 presents averages over all settings that we considered, for all the
baseline methods in the benchmark. Notably, ERD performs well consistently
across data sets. The baselines are ordered by their average performance on all
the settings (see Figure 9).
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Fig. 11: Comparison between ERD and the various baselines on the NIH chest
X-ray data set, for use case 1 (top), use case 2 (middle) and use case 3 (bottom).
Baselines ordered as in Figure 9.

Fig. 12: Comparison between ERD and the various baselines on the PC chest
X-ray data set, for use case 1 (top), use case 2 (middle) and use case 3 (bottom).
Baselines ordered as in Figure 9.
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Fig. 13: Comparison between ERD and the various baselines on the DRD fun-
dus imaging data set, for use case 1 (top), use case 2 (middle) and use case 3
(bottom). Baselines ordered as in Figure 9.

For all of medical benchmarks, the unlabeled set is balanced, with an equal
number of ID and OOD samples (subsampling the bigger data set, if necessary).
We use the unlabeled set for evaluation.

Appendix H Effect of learning rate and batch size
We show now that our method ERD is not too sensitive to the choice of hyper-
parameters. We illustrate this by varying the learning rate and the batch size,
the hyperparameters that we identify as most impactful. As Figure 14 shows,
many different configurations lead to similar OOD detection performance.

Fig. 14: AUROCs obtained with an ensemble of WRN-28-10 models, as the ini-
tial learning rate and the batch size are varied. We used the hardest setting,
CIFAR100:0-50 as ID, and CIFAR100:50-100 as OOD.
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