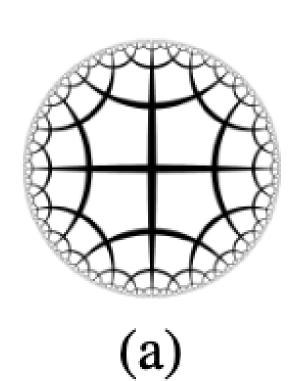
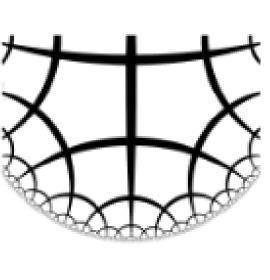
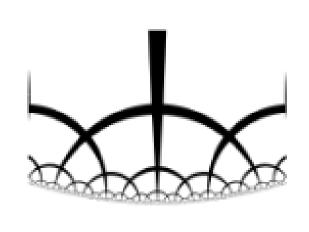


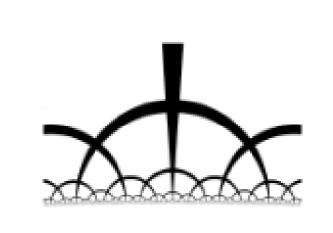
Poincaré GloVe: Hyperbolic Word Embeddings

Alexandru Țifrea, Gary Bécigneul, Octavian-Eugen Ganea Department of Computer Science, ETH Zürich, Switzerland

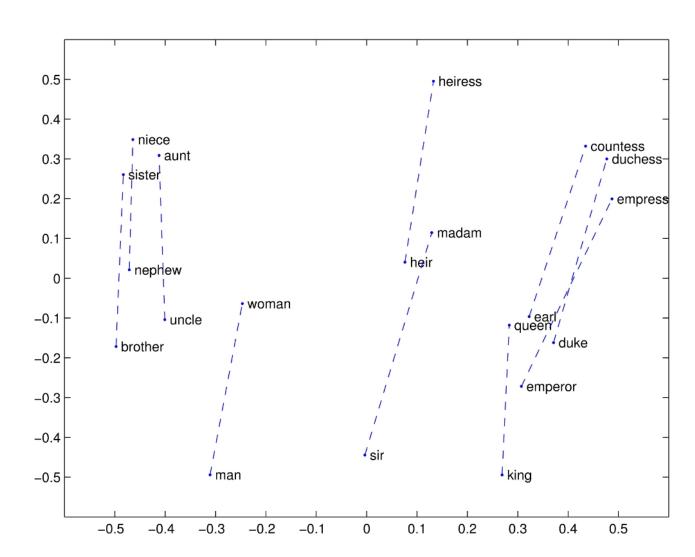


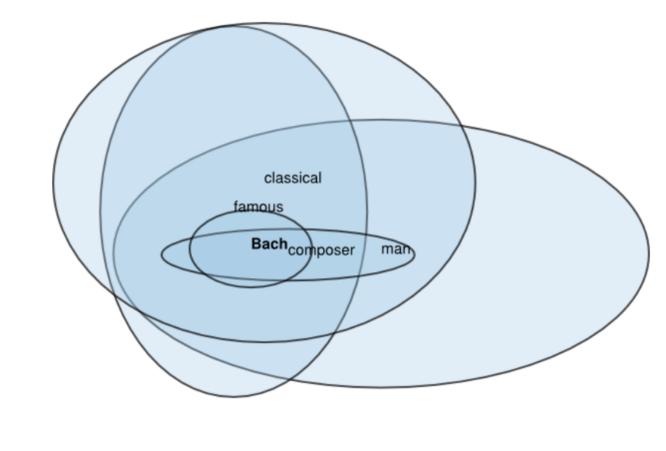

Problem Definition


Goal 1: train unsupervised word embeddings that capture word similarity and word analogy, like GloVe


Goal 2: additionally capture lexical entailment

- use the hyperbolic space for training
- no supervision during training
- provide mathematically sound way to perform inference for the three evaluation tasks


(b)


(c)

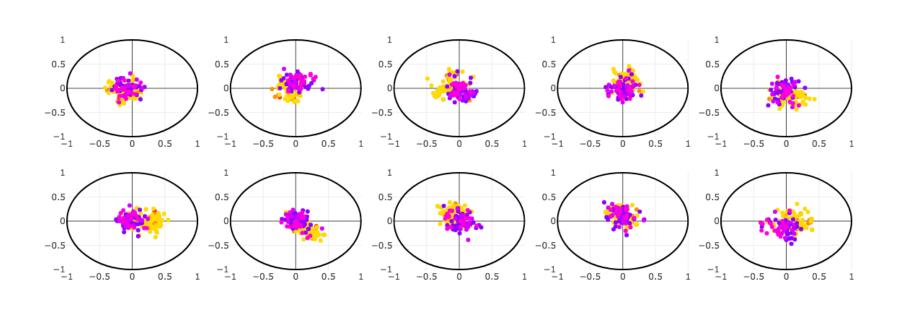
(d)

Prior work & Baselines

- 1) GloVe embeddings (Pennington et al, 2014)
- Euclidean point embeddings
- capture word similarity and analogy

2) Gaussian Word Embeddings (Vilnis et al, 2014)

- represent words in the space of diagonal Gaussians
- capture lexical entailment, but no indication of their performance on word analogy tasks


Poincaré GloVe

Loss: $J = \sum_{i,j=1}^{V} f(X_{ij}) \left(-h(\mathbf{d}_{Poincar\acute{e}}(\mathbf{w}_i, \tilde{\mathbf{w}}_j)) + b_i + \tilde{b}_j - \log X_{ij} \right)^2$

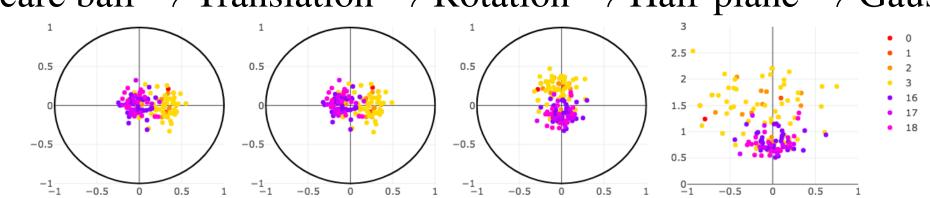
• $d_{prod}(x,y) = \sqrt{\sum_{i=0}^{k} d_{Poincar\acute{e}}(x_i,y_i)^2}$ for training in the Cartesian product of Poincaré balls

Connection to word2gauss

Let $\Sigma = diag(\sigma)^2$, $\Sigma' = diag(\sigma')^2$ and $d_{\mathbb{H}^2}(\cdot, \cdot)$ be the half-plane distance. Then $d_F(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\mu', \Sigma')) = \sqrt{\sum_{i=1}^n 2d_{\mathbb{H}^2} \left((\mu_i/\sqrt{2}, \sigma_i), (\mu_i'/\sqrt{2}, \sigma_i') \right)^2}$ (Costa et al, 2015).

Word analogy via Parallel Transport

"king is to queen what man is to woman"

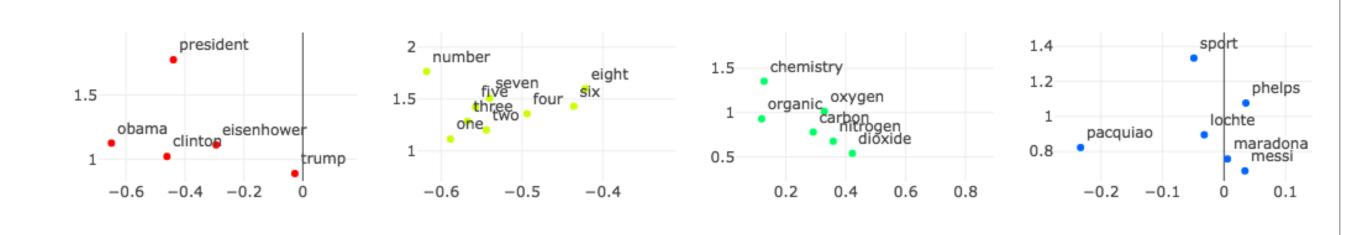

$$A \rightarrow B \Rightarrow C \rightarrow D$$
, and $A \rightarrow C \Rightarrow B \rightarrow D$

 $d_1 = c \oplus gyr[c, \ominus a](\ominus a \oplus b), \text{ and } d_2 = b \oplus gyr[b, \ominus a](\ominus a \oplus c)$

Solution: interpolate between the two points obtained with parallel transport

Lexical entailment

Poincaré ball \rightarrow Translation \rightarrow Rotation \rightarrow Half-plane \rightarrow Gaussians


Translation & rotation parameters chosen using two approaches:

1) semi-supervised (using a sample of WordNet generic/specific words)2) unsupervised (using sample of frequent/rare words)

Let P, Q be two words with Gaussian embeddings (μ, Σ) and (μ', Σ') .

LE score: is-a $(P,Q) = \log(V_{\Sigma'}) - \log(V_{\Sigma}) = \sum_{i=1}^{n} (\log(\sigma'_i) - \log(\sigma_i))$ **Intuition:**

Large variance \Rightarrow Generic word Small variance \Rightarrow Specific word

Experiments

• Word similarity and analogy results (highlighted: the **best** and the 2^{nd} best).

Experiment name	RareWord	WordSim	SimLex	SimVerb	Google	MSR
100D Vanilla GloVe	0.3798	0.5901	0.2963	0.1675	0.5931	0.4868
100D Vanilla GloVe w/ init trick	0.3787	0.5668	0.2964	0.1639	0.6167	0.4826
100D Poincaré GloVe $h(x) = \cosh^2(x)$, w/ init trick	0.4187	0.6209	0.3208	0.1915	0.6339	0.4971
50 x2D Poincaré GloVe $h(x) = \cosh^2(x)$, w/ init trick	0.4276	0.6234	0.3181	0.189	0.6045	0.4849
50x2D Poincaré GloVe $h(x) = x^2$, w/ init trick	0.4104	0.5782	0.3022	0.1685	0.6300	0.4672

• Hyperlex results (Spearman correlation) for different model types ordered according to their difficulty.

Table 1

MODEL TYPE	Method	ho	
Supervised embedding learning &	WN-Eucl from Nickel et al	0.389	
Unsupervised hypernymy score	WN-Poincaré from Nickel et al	0.512	
	50x2D Poincaré GloVe, $h(x) = \cosh^2(x)$, init trick (190k)		
	• WordNet 20+20	0.360	
Unsupervised embedding learning &	 WordNet 400+400 	0.402	
Weakly-supervised hypernymy score	50x2D Poincaré GloVe, $h(x) = x^2$, init trick (190k)		
	• WordNet 20+20	0.344	
	 WordNet 400+400 	0.421	
	Word2Gauss-DistPos	0.206	
	SBOW-PPMI-C \triangle S from Chang et al	0.345	
Unsupervised embedding learning &	50x2D Poincaré GloVe, $h(x) = \cosh^2(x)$, init trick (190k) • Unsupervised 5k+5k		
Unsupervised hypernymy score			
	50x2D Poincaré GloVe, $h(x) = x^2$, init trick (190k) • Unsupervised 5k+5k		

Resources

Code: https://github.com/alex-tifrea/poincare_glove

Blog post: http://hyperbolicdeeplearning.com/poincare-glove/

References

- Pennington et al, "Glove: Global vectors for word representation", EMNLP 2014
- Vilnis et al, "Word representations via Gaussian embedding", ICLR 2015
- Costa et al, "Fisher information distance: a geometrical reading", 2015
- Chang et al, "Distributional inclusion vector embedding for unsupervised hypernymy detection", NAACL 2018
- Nickel et al, "Poincaré embeddings for learning hierarchical representations", NIPS 2017.