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ROBUST OVERFITTING

» Adversarial training with regularization
— more robust than unregularized estimator.

» First observed for neural networks and image data sets [1].

» Prior work has attributed this phenomenon to: (1) noise in
the training data; (2) non-smooth predictors.

ROBUST LINEAR CLASSIFICATION

> Evaluation with the robust risk with ¢, perturbations:

= Exp max, Lsgn((6,Xx+6))sgn((0*,X))

» We use adversarial training to obtain a robust estimator:
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> For A — 0 = maximizes the robust margin of the data.

Ay := argmin |02 such that for all i, max y;(0, z; + &) > 1.
0 =2

AVOIDING 6y VIA RIDGE REGULARIZATION

Ridge regularization (A > 0) yields a negative robust margin
— avoids the max-margin estimator.
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— the lowest standard and robust risks are not obtained by
the max-margin classifier, but by the regularized ones.

THEORETICAL RESULT

Problem setting:

> Data model: covariates x ~ N (0, I;), deterministic labels
given by y = sgn(f*,x) € {—1,+1}. — Noiseless data!

» Sparse ground truth 0* = (1,0,...,0)".
» We consider linear classifiers trained with the logistic loss.

Main result: We derive expressions for standard and robust
risks in the asymptotic regime as d,n — oo and d/n — 7.
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Lines: asymptotic risks (theory).
Markers: the risks for finite d, n (simulations).

> The proof uses the Convex Gaussian Minimax Theorem [2].

» regularization leads to estimators with smaller robust
risks

— even in high-dimensional settings (i.e. d > n), where
overfitting is most unexpected.
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OTHER WAYS TO AVOID 6

1. Early stopping avoids the max-margin estimator and
achieves lower robust risk.
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Iteration

2. Adding artificial label noise prevents a vanishing training
loss — avoids the max-margin estimator.

Surprising consequence: Smaller robust risk, compared
to the max-margin interpolator of the original clean data.
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Remark: Regularization still leads to smaller robust risk,
even in the presence of noise.

CONCLUSION

Regularization is crucial in order to achieve low robust risk.

— even for high-dimensional and noiseless data
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