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PHENOMENON 1: DOUBLE DESCENT

Observed empirically for neural networks and theoretically for
highly overparameterized (d � n) linear and random feature
models [1].

I Generalization does not benefit from optimal regularization
compared to interpolating the training data.

I Overparameterization implicitly controls the variance

→ Regularization (e.g. ridge or early stopping) is redundant.

PHENOMENON 2: ROBUST RISK OVERFITS

Observed empirically for neural networks on image data sets [2].

I Robust generalization benefits significantly from optimal regu-
larization.

I Prior work has attributed this phenomenon to:
I noise in the training data

I non-smooth predictors

Does linear regression suffer from robust overfitting?

Yes, even on noiseless training data!
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PROBLEM SETTING
I We study the linear ridge regression estimator:

θ̂λ := arg min
θ

1

n

n∑
i=1

(〈θ, xi〉 − yi)2 + λ‖θ‖22.

I If d/n > 1, λ→ 0 yields the minimum `2-norm interpolator:

θ̂0 := arg min
θ
‖θ‖2 such that for all i, 〈θ, xi〉 = yi.

I Evaluation with respect to the consistent robust risk with
`2 perturbations:

Rε(θ) := EX∼P max
‖δ‖2≤ε,〈θ?,δ〉=0

(〈θ − θ?, X + δ〉)2

THEORETICAL RESULT

High-dimensional data model:

I n i.i.d. covariates xi ∼ N (0, Id).

I observations yi = 〈θ?, xi〉+ ξi with noise ξi ∼ N (0, σ2Id).
I d, n→∞, d/n→ γ.

Theorem. Define m(z) =
1−γ−z−

√
(1−γ−z)2−4γz
2γz and let m′ be

its derivative. Let P = B + V − λ2(m(−λ))2 and B = λ2m′(−λ),
V = σ2γ(m(−λ)− λm′(−λ)) be the asymptotic bias and variance.
Then,

Rε(θ̂λ)
a.s.−→ B + V + ε2P +

√
8ε2

π
P(B + V)

Furthermore, the standard risk R(θ̂λ) → B + V a.s.

→We can compute the asymptotic standard and robust risks.

THEORETICAL PREDICTIONS

Theoretical predictions (lines) for d, n → ∞ and experimental re-
sults (markers) for finite d, n.
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I Theoretical predictions match simulations for finite d, n.
I Standard risk: No overfitting thanks to implicit regularization

for large d/n.
I Robust risk: Overfitting even for noiseless data and large d/n.

INTUITIVE EXPLANATION

For noiseless observations, both risks depend only on:
I Fit in the direction of the ground truth: ‖θ? −Π‖θ̂λ‖22.
I Orthogonal misfit: ‖(I −Π‖)θ̂λ‖22.

λ ↑: γ = 2.0 γ = 2.8 γ = 4.5 λ→ 0 λopt
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→ Robust risk punishes orthogonal misfit stronger than standard
risk, leading to λopt > 0.
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